منابع مشابه
Singularities and Direct-sum Decompositions
Let (R; m;k) be a local ring (commutative and Noetherian). We will discuss existence and uniqueness of direct-sum decompositions of nitely generated R-modules. One says that R has nite CM type provided there are only nitely many indecomposable maximal Cohen-Macaulay R-modules up to isomorphism. Among complete equicharacteristic hypersurface rings with k algebraically closed of characteristic 6 ...
متن کاملDirect-sum Decompositions over Local Rings
Let (R,m) be a local ring (commutative and Noetherian). If R is complete (or, more generally, Henselian), one has the Krull-Schmidt uniqueness theorem for direct sums of indecomposable finitely generated R-modules. By passing to the m-adic completion b R, we can get a measure of how badly the Krull-Schmidt theorem can fail for a more general local ring. We assign to each finitely generated R-mo...
متن کاملDirect-sum decompositions over one-dimensional Cohen-Macaulay local rings
1 Alberto Facchini, Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, I-35131 Padova, Italy, [email protected] 2 Wolfgang Hassler, Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstraße 36/IV, A-8010 Graz, Austria, [email protected] 3 Lee Klingler, Department of Mathematical Sciences, Florida Atlanti...
متن کاملLattices of Subautomata and Direct Sum Decompositions of Automata
The subject of this paper are general properties of direct sum decompositions of automata. Using certain properties of the lattice Sub(A) of subautomata of an automaton A and its Boolean part, lattices of direct sum congruences and direct sum decompositions of A are characterized. We show that every automaton A can be represented as a direct sum of direct sum indecomposable automata, and that t...
متن کاملDirect-sum decompositions of modules with semilocal endomorphism rings
Let R be a ring and C a class of right R-modules closed under finite direct sums. If we suppose that C has a set of representatives, that is, a set V(C) ⊆ C such that every M ∈ C is isomorphic to a unique element [M ] ∈ V(C), then we can view V(C) as a monoid, with the monoid operation [M1] + [M2] = [M1 ⊕M2]. Recent developments in the theory of commutative monoids (e.g., [4], [15]) suggest tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1974
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1974.53.629